by Reni Gorman
Tip #2: Use the conceptual framework (you created in tip #1) to organize course material into hierarchical groups, subgroups and chunks of 7 (plus or minus 2).
Cognitive Psychology: Prepare information for encoding into the propositional network by attempting to organize and chunk material into meaningful patterns of information based on a conceptual framework and limited to groups or units of 7 (plus or minus 2) to account for the standard capacity of verbal working memory.
Even though experts have vast knowledge basis in their domain, their knowledge is organized around a set of core concepts that guide them. These core concepts “emerge” as a higher level pattern among all the data for their domain referred to as meaningful patterns of information that arose over years of practice. (Bransford et al., 2000) “A key finding in the learning and transfer literature is that organizing information into a conceptual framework allows for greater “transfer”; that is, it allows the student to apply what was learned in new situations and to learn related information more quickly.” (Bransford et al., 2000, p. 18)
In a study by DeGroot (1965) expert chess players were compared to novice players by asking them to verbalize their thinking as they played. The experts were more likely to recognize meaningful chess configurations and strategies that allowed them to consider sets of moves that were superior to novices. “Chess masters are able to chunk together several chess pieces in a configuration that is governed by some strategic component of the game. Lacking a hierarchical, highly organized structure for the domain, novices cannot use this chunking strategy.” (p. 33)
“The superior recall ability of experts… has been explained in terms of how they ‘chunk’ various elements of a configuration that are related by an underlying function or strategy. (Bransford et al., 2000, p. 32) According to Anderson (2000) our minds seem to break information down into the smallest unit of knowledge that can stand as a separate assertion for storage, into a proposition.
Understandably, studies have shown that propositional retention is also better in and of itself when meaning is applied. In an experiment, Anderson (2000) himself participated in; subjects were asked to remember pairs of meaningless acronyms such as DAX-GIB. Meaningless memorization resulted in Anderson scoring the worst in his class. Anderson now suggests tying meaning to the acronyms would have improved his ability to recall them.
“Propositions information can be represented in networks that display the relations among concepts.” (Anderson, 2000, p. 151) Propositional networks are also referred to as a semantic network: of or related to meaning.
If you ask people to listen to a list of 20 unrelated words and then ask them to immediately recall them in any order. Then, graph the results with position of the word in the original list on the X (horizontal) axis and the proportion of people who recall that word on the Y (vertical) axis, and you will get a U-shaped curve. This is called a Serial Position Curve and it reveals that the words in the beginning and end of the list are what most people remember, with, generally more words remember at the end. Usually people will remember 7 plus or minus 2. This is considered a standard measurement of the capacity of verbal working memory. (Anderson, 2000) The interesting twist as it relates to the organization of information is that if you give subject-related words, the U-shaped curve still returns, but people will remember more words because they will remember groups of related words.
Bransford, J. D., Brown, A. L., & Cocking, R. R. (2000). How People Learn: Brain, Mind, Experience, and School. Washington, D.C.: National Academy Press.
Anderson, J. R. (2000). Cognitive Psychology and Its Implications: Fifth Edition. New York, N.Y.: Worth Publishers.
Tip #2: Use the conceptual framework (you created in tip #1) to organize course material into hierarchical groups, subgroups and chunks of 7 (plus or minus 2).
Cognitive Psychology: Prepare information for encoding into the propositional network by attempting to organize and chunk material into meaningful patterns of information based on a conceptual framework and limited to groups or units of 7 (plus or minus 2) to account for the standard capacity of verbal working memory.
Why (Justification):
“The fact that ‘expert’ knowledge is organized around important ideas or concepts suggests that curricula should also be organized in ways that lead to conceptual understanding.” (Bransford et al., 2000, p. 42)Even though experts have vast knowledge basis in their domain, their knowledge is organized around a set of core concepts that guide them. These core concepts “emerge” as a higher level pattern among all the data for their domain referred to as meaningful patterns of information that arose over years of practice. (Bransford et al., 2000) “A key finding in the learning and transfer literature is that organizing information into a conceptual framework allows for greater “transfer”; that is, it allows the student to apply what was learned in new situations and to learn related information more quickly.” (Bransford et al., 2000, p. 18)
In a study by DeGroot (1965) expert chess players were compared to novice players by asking them to verbalize their thinking as they played. The experts were more likely to recognize meaningful chess configurations and strategies that allowed them to consider sets of moves that were superior to novices. “Chess masters are able to chunk together several chess pieces in a configuration that is governed by some strategic component of the game. Lacking a hierarchical, highly organized structure for the domain, novices cannot use this chunking strategy.” (p. 33)
“The superior recall ability of experts… has been explained in terms of how they ‘chunk’ various elements of a configuration that are related by an underlying function or strategy. (Bransford et al., 2000, p. 32) According to Anderson (2000) our minds seem to break information down into the smallest unit of knowledge that can stand as a separate assertion for storage, into a proposition.
Understandably, studies have shown that propositional retention is also better in and of itself when meaning is applied. In an experiment, Anderson (2000) himself participated in; subjects were asked to remember pairs of meaningless acronyms such as DAX-GIB. Meaningless memorization resulted in Anderson scoring the worst in his class. Anderson now suggests tying meaning to the acronyms would have improved his ability to recall them.
“Propositions information can be represented in networks that display the relations among concepts.” (Anderson, 2000, p. 151) Propositional networks are also referred to as a semantic network: of or related to meaning.
If you ask people to listen to a list of 20 unrelated words and then ask them to immediately recall them in any order. Then, graph the results with position of the word in the original list on the X (horizontal) axis and the proportion of people who recall that word on the Y (vertical) axis, and you will get a U-shaped curve. This is called a Serial Position Curve and it reveals that the words in the beginning and end of the list are what most people remember, with, generally more words remember at the end. Usually people will remember 7 plus or minus 2. This is considered a standard measurement of the capacity of verbal working memory. (Anderson, 2000) The interesting twist as it relates to the organization of information is that if you give subject-related words, the U-shaped curve still returns, but people will remember more words because they will remember groups of related words.
How (Application):
- Flesh out the details of your high level outline that you based on the conceptual framework. The first level categorization should remain equal to your conceptual framework and expand the hierarchy from there into a detailed outline with logical related groupings and sub-groupings as needed by taking each concept and creating subgroups of chunks that explain that concepts (sub-concepts). (Main topics and sub-topics.) Make sure you have enough information for each core concept to explain its meaning.
- In addition to the main points you wrote for your core concepts, write main points for each sub-concept (sub-topic) as well.
- Take a look at your hierarchical outline when you are done to see if it is chunked optimally. Try to keep each group limited to about 7 (plus or minus 2) if possible.
Bransford, J. D., Brown, A. L., & Cocking, R. R. (2000). How People Learn: Brain, Mind, Experience, and School. Washington, D.C.: National Academy Press.
Anderson, J. R. (2000). Cognitive Psychology and Its Implications: Fifth Edition. New York, N.Y.: Worth Publishers.